Search for Boosted Top Quarks at CDF

Outline

- 1. Introduction and Motivation
- 2. Data Selection & Jet Calibration
- 3. Boosted Top Signals
- 4. Results
- 5. Conclusions

Representing the CDF Collaboration

Key Players:

Raz Alon, Gilad Perez & Ehud Duchovni Weizmann Institute of Science

&

Pekka K. Sinervo, FRSC University of Toronto

Boosted Top Quarks

- Boosted top quarks a signature for several new physics models
 - Typically looking for resonances that decay to top-antitop pairs
 - Searches have focused on "resolved final states"
 - > Lepton+jets with b-tagging
 - \triangleright Best limit is 70 fb at m_{tt}~1 TeV
 - > Acceptance is 3.6%
 - Limited by acceptance and production rate
 - ➤ Exclude leptophilic Z' < 900 GeV/c²
- Our focus has been on unresolved final states

CDF, PRD 78, 052006 (2008)

Strategy for Analysis

- Select high p_T jets in CDF central calorimeter
 - Use tower segmentation to measure jet mass
 - > Confirm with tracking information
 - Employ standard "e-scheme" for mass calculation
 - > 4-vector sum over massless towers in jet
 - > Four vector sum gives (E,p_x,p_v,p_z)
- Employ Midpoint cone jets
 - Best understood in CDF II context
 - Compare results with anti-k_T and Midpoint with "search cones" (Midpoint/SC)

N.B. CDF central towers are $\Delta \eta \times \Delta \phi \sim 0.11 \times 0.26$

Boosted Objects at Tevatron

SM sources for high-p_T objects calculable

- Dominated by light q & gluons
- Need x250 rejection to observe other sources

Other sources:

- Fraction of top quarks ~1.5%
 for p_T > 400 GeV/c
 - > Total rate 4.45±0.5 fb (Kidonakis & Vogt)
 - > PYTHIA 6.216 rate is 6.4 fb (scaling total cross section to measured world average)
- Expect W/Z production of similar order

Kidonakis & Vogt, PRD 68, 114014 (2003)

PYTHIA 6.4 Calculation

Data Selection

- Analyzed inclusive jet sample
 - Trigger requires E_T^{jet} > 100 GeV
 - Analyzed 5.95 fb⁻¹ sample
- Selected data with focus on high p_T objects
 - Kept any event with
 - > Jet with p_T > 300 GeV/c and $|\eta|$ < 0.7
 - ➤ Used cones of R=0.4, 0.7 and 1.0
- Processed 76M events
 - Selected subsample with
 - $p_T > 400 \text{ GeV/c}$
 - $|\eta| \in (0.1,0.7)$

Performed cleaning cuts

- Event vertex, jet quality and loose S_{MET} (< 14)
- Resulted in 2700 events using jets with R=0.7

Jet Mass Corrections

- Corrected jet mass using standard jet corrections
 - Further correction needed for multiple interactions (MI)
 - Use N_{vtx}=1 and N_{vtx}>1 events to determine MI effect

- Effect of calorimeter inhomogeneity at $\eta=0$
 - Varied pseudorapidity window no significant changes in mass
- Calorimeter segmentation and jet recombination
 - > Varied position of towers (especially azimuth) and corrections for geometry
- Calorimeter response across face of jet
 - > Detailed study of tracking/calorimeter response in data and MC/detector simulation
- Jet energy scale vs algorithm (Midpoint, Midpoint/SC, anti-k_T)
 - > Saw < 1 % difference

Effects of MI and UE

Additional contribution from

- Underlying Event (UE)
- Multiple Interactions (MI)
 - ➤ Average # interactions ~3/crossing

Looked at purely dijet events

- O Defined cones (same size as jet) at 90° in azimuth (same η)
- Took towers in cones,
 and added to leading jet in event
 - Mass shift, on average, is same shift coming from UE and MI

■ Separately measure N_{vtx}=1 events

Gives UE correction separately

R. Alon et al., arXiv:1101.3002

Correction scales as R⁴

Inter-Jet Energy Calibration

Jet mass arises from deposition of varying energy per tower

 Performed study to compare momentum flow vs calorimeter energy internal to jet

 \triangleright Defined 3 rings and compared observed p_T/E_T with simulation

- \circ At m^{jet}=60 GeV/c², Δ m^{jet}=1 GeV/c²
- \circ At m^{jet}=120 GeV/c², Δ m^{jet}=10 GeV/c²
- Largest source of systematic uncertainty

Ring 1 $\Delta\eta X\Delta\phi$ =0.44x0.52 (yellow) Ring 2 $\Delta\eta X\Delta\phi$ =0.88x1.04 (green) Ring 3 $\Delta\eta X\Delta\phi$ =1.32x1.57 (blue)

Typical Event

Run 286857 Event 79179

$\mathbf{p}_{\mathbf{T}}$	ф	m ^{jet}	τ ₋₂	Pf
387	-3.11	175	0.024	0.66
344	0.09	113	0.019	0.40

Typical QCD configuration:

- Dijet with back-to-back recoil
- Recoil jet less massive

Jet Substructure – Mass

Massive jet

- Leading jets with $m_{jet} > 70 \text{ GeV/c}^2$
- Perform an "unfolding" correction
- Agreement consistent with quark jets
 - Expect ~85%
 of jets to be
 quark-initiated
 - No significant differences between anti-k_T and Midpoint algorithms

Jet Substructure – Planar Flow

- Planar Flow is also IR-safe
 - Low Pf -> twobody kinematics
 - Not strongly correlated to m^{jet} for high mass
- Consistent with QCD predictions
 - See the expected low Pf peak
 - Contrasts with top quark jets – larger planar flow

 $130 < m_{jet} < 210 \text{ GeV/c}^2$

Summary of Substructure Studies

Results show:

- High p_T jets look like QCD light quark jets
 - > m^{jet} good discriminant
 - \rightarrow 1.4±0.3% of QCD jets have m^{jet} > 140 GeV/c²
- Internal structure looks "two-body"
 - > Angularity & planar flow
- pQCD gives good description of mjet
 - Other substructure measures well-modelled with PYTHIA

- Jet masses are largely uncorrelated
 - Recoil jet doesn't know about leading m^{jet}

Strategies for Boosted Top

■ Two topologies:

- **1.** All hadronic ("1+1")
 - > Two massive jets recoiling ($\epsilon \sim 11\%$)
- 2. Semi-leptonic decay ("SL")
 - > Require $S_{MET} > 4 (\epsilon \sim 7\%)$

■ MC predicts ~0.8 fb

- Divided 60:40 between topologies
 - ➤ Highest efficiency channel for top (~18%)
- Important handles for background:
 - masses of QCD di-jets not correlated
 - \succ Jet mass and S_{MET} not correlated

Selection Requirements

Keep selection simple

- Focus on two separate channels
- All Hadronic Top (1+1)
 - Require 2 jets with $130 < m^{jet} < 210 \text{ GeV/c}^2$
 - Require S_{MET} < 4
 - Estimate background using "ABCD" technique
- Semi-leptonic top (SL)
 - Require $4 > S_{MET} > 10$
 - \circ Require 1 jet with $130 < m^{jet} < 210 \text{ GeV/c}^2$
 - Estimate background using "ABCD" technique

"Simple" Counting of 1+1

- With R=1.0 cones, m^{jet1} and m^{jet2} are equally powerful
 - Use jet mass (130,210) GeV/c²
 to define ttbar candidates
 - Expect 3.0±0.8 top quark events to populate this region

- Employ data to estimate backgrounds
 - Define mass windows $m^{jet} \in (130,210) \text{ GeV/c}^2$ $m^{jet} \in (30,50) \text{ GeV/c}^2$
 - Use fact that m^{jet}
 distributions uncorrelated
 for background
 - Signal is region D
 - In "1+1" sample, predict
 13±2.4 (stat) bkgd events

Observe N_D =32 events

Investigated m^{jet} Correlations

- We have been assuming that **NLO** effects increase rate of m^{jet1} and m^{jet2} are uncorrelated
 - Recent MC studies have shown this to be not exact

- two massive QCD jets
 - Quantified by defining R_{mass}

$$R_{mass} \equiv \left[\frac{N_C N_B}{N_A N_D} \right]$$

$$N_D^{pred} = \left[\frac{N_C N_B}{N_A R_{mass}} \right]$$

POWHEG: Rmass=0.89±0.03

MC tools	Matching	$R_{\rm mass}$
Sherpa	Yes	0.88 ± 0.03
MadGraph	Yes	0.86 ± 0.04
MadGraph	No	0.76 ± 0.04
Herwig	No	0.86 ± 0.02

Y. Eschel et al., arXiv:1101.2898

"Simple" Counting for SL

- In case of recoil semileptonic top, use m^{jet1} and S_{MET}
 - \circ Assumption is the S_{MET} and m^{jet1} are uncorrelated
 - Expect 1.9±0.5 top quark events to populate this region

Employ data to estimate backgrounds

- Use regions $m^{jet1} \in (30,50) \& (130,210) \text{ GeV/}c^2$
- $S_{MET} \in (2,3) \& S_{MET} \in (4,10)$
 - In "SL" sample, predict31±8 (stat) bkgd events

Observe N_D =26 events

Region	m ^{jet l}	S_{MET}	Data	MC
	(GeV/c^2)	$(\sqrt{GeV/c^2})$	(Events)	(Events)
A	(30,50)	(2,3)	256	0.01
В	(130, 210)	(2,3)	42	1.07
C	(30,50)	(4,10)	191	0.03
D (signal)	(130, 210)	(4, 10)	26	1.90
Predicted QCD in D			31.3 ± 8.1	

Uncertainties

- Background uncertainty
 (±10.2 GeV/c² jet mass scale)
 - ±30% uncertainty
- Uncertainties on top efficiency (SM production)
 - Primarily jet energy scale of $\pm 3\%$ on pT -> $\pm 25\%$ on σ
- Background statistics
 - ±11% from counting
- Luminosity
 - ±6% on integrated luminosity
- m^{top} uncertainty (±2 GeV/c²)
 - ±0.3%

- Overall uncertainties added in quadrature
 - ±41% overall
- Incorporated into upper limit calculation
- Use a CL_s frequentist method
 - Marginalize nuisance parameters
 - Same as used in Higgs and single top searches

Top Quark Cross Section Limit

- Assume we observe signal + background
 - Set upper limit on SM production σ for top quark with $p_T > 400 \text{ GeV/c}$
- Observe 58 events with 44+/-8 background
 - Calculate 95% CL upper limit using CL_s method
 - > Systematic uncertainties incorporated a la CDF 8128 (T. Junk)
 - \triangleright N_{LIM} = 43.3 events
 - Efficiency from MC

▶ 1+1: 11.1%

> SL: 7.0%

■ Upper limit on cross section for $p_T > 400 \text{ GeV/c}$

$$\sigma_{95\%} = \frac{N_{LIM}}{\int L \, dt \, \varepsilon}$$

$$= \frac{43.3}{(5.95)(0.182)} = 40 \text{ fb}$$

Can also set limit on 1+1 only

- o Assume massive ($m \sim m_{top}$) object, pairproduced, decaying hadronically
- Include SM top as background

$$\sigma_{95\%} = \frac{N_{LIM}}{\int L \, dt \, \varepsilon}$$

$$= \frac{30.2}{(5.95)(0.254)} = 20 \text{ fb}$$

Also ~3σ excess above SM top

Conclusions

- Search for boosted top at Tevatron close to SM rate
 - Achieve

$$S/\sqrt{B} \approx 0.75$$

- \circ Set $\sigma < 40$ fb at 95% CL
- Limited by statistics
- Doesn't take advantage of substructure (aside from m^{jet})
 - E.g., planar flow cut > 0.5improves S/N by ~1.5
 - And haven't used
 - B-tagging
 - > For SL, look for isolated charge track

- Next steps
 - At Tevatron, can improve statistics by x2
 - Tantalizing close to SM
 - Ultimately limited by rate
- Real focus are LHC expts
 - Now recorded sample with similar # of boosted SM ttbar
 - But QCD backgrounds are larger
 - Jet substructure is clearly essential tool
 - > Fully characterize QCD jets
 - > Understand what the best tools are

BACKUP SLIDES

Comparison with Cone Size

Compare

- \circ R=0.4
- \circ R=0.7
- \circ R=1.0

Jet Algorithms

- Cone algorithms used for most Tevatron studies
 - Long history quite
 separate from e⁺e⁻ work
 - JetClu was CDF reference
 - > Required "seed" to initiate
 - Significant IRC sensitivity
- Midpoint developed to reduce IRC sensitivity
 - Use seeds, but then recluster with seeds "midway" between all jets

Use Fastjet Framework!

- Cone algorithms had "dark tower" problem
 - Unclustered energy due to split/merge/iteration procedure
 - Proposed solution: Midpoint with "search cones"
 - \triangleright Find jets with cone size R/2
 - Fix jet direction, cluster with size R
 - Midpoint/SC was used for various studies 2006-2008
- Anti-k_T algorithm developed
 - No IR sensitivity
 - Still retained many of the benefits of a "cone" algorithm

MI/UE Corrections

- Looked at how to make MI correction in a variety of ways
 - Looked at mass corrections event-by-event
 - But statistical fluctuations large, event-to-event
 - Chose to develop a parametrized correction
- Note that:

$$\delta m^{jet} \simeq \frac{E_{tower} E_{jet} \Delta R}{m^{jet}}$$

- Expect MI correction to scale with R⁴:
 - Exactly what we see when comparing R=0.4 and R=0.7
- PYTHIA UE agrees well with data – same UE mass correction
- Use that to scale corrections for R=1.0
 - Method doesn't work with larger cone because of overlap

Internal Jet Energy Scale

- Overall jet energy scale known to 3%
 - The relative energy scale between rings known to 10-20%, depending on ring
 - Use this to constrain how far energy scale can shift
- Do first for m^{jet} ~ 60 GeV/c² use average jet profile
 - Extract from that a limit on how much "Ring 1" energy scale can be off - ± 6%
 - Then do the same for mjet ~
 120 GeV/c²

- Resulting systematic uncertainty is 9.6 GeV/c²
 - Conservative estimate used a very broad energy profile
 - No localized substructure assumed
- Take this as systematic uncertainty
 - Could constrain it better using single particle response
 - Note that fixed cone size is an advantage here

Reconstruction of Top

Leading jet in ttbar events has clear top mass peak

- All events between 70 and 210
 GeV/c² for R=1.0
- See evidence of W peak
 - B quark jet presumably nearby in those cases
- Clear that higher mass cut gives greater QCD rejection
 - > But also start to lose efficiency
- \circ S_{MET} cut effectively identifies semi-leptonic decays (8%)
- B tagging not used
 - Can estimate mis-tags using data -> ~0.05%/jet
 - But large uncertainty in tagging efficiency in high pT jets

Background Calculations

Background calculations used "ABCD" technique

Region	$m^{jet 1}$	S_{MET}	Data	MC
	(GeV/c^2)	$(\sqrt{GeV/c^2})$	(Events)	(Events)
A	(30,50)	(2,3)	256	0.01
В	(130, 210)	(2,3)	42	1.07
C	(30,50)	(4,10)	191	0.03
D (signal)	(130, 210)	(4, 10)	26	1.90
Predicted QCD in D			31.3 ± 8.1	

1+1

Region	m^{jet1}	m^{jet2}	Data	$t\bar{t}$ MC
	(GeV/c^2)	(GeV/c^2)	(Events)	(Events)
A	(30,50)	(30,50)	370	0.00
В	(130, 210)	(30,50)	47	0.08
C	(30,50)	(130, 210)	102	0.01
D (signal)	(130, 210)	(130, 210)	32	3.03
Predicted QCD in D			13.0 ± 2.4	